
ACSACS
Adaptive Computing SystemsAdaptive Computing Systems

Dr. José MuñozDr. José Muñoz

Information Technology OfficeInformation Technology Office

1

ACS will turn around, revolutionize, the way we currently think about hardware and software and
will provide capabilities desperately needed to address the threats and rapidly evolving mission
requirements of the Department of Defense.

8.1

ADAPTIVE COMPUTING SYSTEMSADAPTIVE COMPUTING SYSTEMS

n Dynamic adaptation to
threats

n Extended mission
capabilities

n Seamless, complete,
life cycle performance
upgrades

n Commodity technology
easily augmented

Adaptive Computing
and Communications
Technology for Evolving
Defense Systems2

The military in 1975 consumed 17% of the total semiconductor market based on dollars. In 1995 that
figure was less than 1%. As a result, the military is in a position of reduced influence, but has
applications that are extremely stressing and make significant demands on computational and
communication resources. Further complicating the picture is that it is projected that by the year
2000 about 14 semiconductor-based devices will become obsolescent, and hence not available to the
military, per day!

When completed, the Adaptive Computing Systems (ACS) program will provide to the warfighter a
technology that can adapt to changes in algorithms, data, and mission stages. Regarding security
issues, ACS-based systems will respond in innovative ways to fault tolerance and security concerns
while at the same time providing performance benefits orders of magnitude above conventional
approaches.

8.2

EVOLUTION OF ADAPTIVEEVOLUTION OF ADAPTIVE
COMPUTING SYSTEM TECHNOLOGYCOMPUTING SYSTEM TECHNOLOGY

• ~106 gates/chip
• “Sea of Gates”
• Configurable HW

architecture
• Configurable interconnect
• Definable instructions
• Definable system function
• Dynamically

reconfigurable
functionality

• Fine grained performance
allocation

Re-configurable ComputingMicro-Programmable Computers
• Emulate target machines
• “Configurable” user-level instructions

and control flow
• Fixed hardware functions &

interconnect

Module-Level Configuration
• Military standard modules

-10s gates/module
-Mix and match modules
-Fixed interconnect
-No reconfiguration

e.g., DEC PDP-11
3

Let’s take a brief look at the evolution of “adaptable” or configurable computing. Back in the ‘70s
we had micro-programmable computers. These enabled a user to create his own instructions and
control flow and were used primarily to emulate other machines. They did not provide any additional
hardware functionality, and you were restricted to use the interconnect and datapaths provided by the
vendor. You also had the ability to “adapt” at the module level using relatively low-complexity
hardware modules. “Configuration” here consisted of the mixing and matching of boards to create a
system tailored to a specific set of requirements. Again, you had to live within the fixed interconnect
provided, and there certainly was no capability such as dynamic reconfiguration.

ACS will provide technologies enabling you to create, “on-the-fly” if required, the computing and
interconnect resources required to meet a set of requirements. It will result in a “sea-of-gates” with
on the order of a million gates per chip, that can be used to define not only instructions but also how
these instructions are interconnected, or “wired.” Utilizing such an approach will enable the creation
of systems specifically tailored to meet requirements needs, down to the chip level. You utilize only
the resources demanded by the application and only for so long as they are required…computing by
the micron2/sec.

8.3

ACS APPROACHACS APPROACH

Mechanisms

nExploit configurable logic to redefine boundary
between hardware and software

nProvide configurable hardware abstraction to
facilitate algorithm design process

nOptimize implementation through concurrent
hardware/software design

nDefine hardware architecture dynamically
at runtime
– enable rapid reconfiguration (single cycle)

4

The ability to create new hardware, at runtime, using software mechanisms, will result in a true
paradigm shift. The boundary that currently exists between hardware and software will be removed
as the user will not have to settle for the architecture provided by a vendor; but instead can specify
and create algorithm specific circuits in response to application specific requirements.

The implications of such a technology are wide and far reaching. Imagine you’re an algorithm
designer and are now given the capability of specifying the number of bits of precision required for
your problem? ACS will develop the COTS based hardware components, programming, runtime
support environment and application development environments to enable the user to “reach
through” the hardware layer, at runtime, and create the computing resources tailored to meet his
specific requirements.

The key to all of these benefits is to provide them in a manner that is transparent and “natural” to
the user.

8.4

COMPLEX SYSTEM HARDWARE EMULATION:COMPLEX SYSTEM HARDWARE EMULATION:
TECHNOLOGY BASELINETECHNOLOGY BASELINE

State of the Art
n 225K Emulation Gates

n 0.5 MHz Emulation Rate

n 6-8X Cost Reduction

n 4 Mbits Modular Memory

Sponsor: DARPA Microsystems Pgm
Performer: Virtual Machine Works
Project: Virtual Wires

Pentium-Pro Class Emulation
n 1M Total Gates

(4-6 boards)

n Today’s technology would
take “only” one board

5

Shown here is the “sea-of-gates” using circa ‘95 technology. It’s “pizza box” size, containing 64 field
programmable gate arrays, FPGA, and contains about 225,000 gates running at 1/2 megahertz and
has about 1/2 Mbyte of memory. It could be used to emulate a Pentium-Pro class architecture,
requiring about one million gates and therefore 4-6 boards of this size, resulting in a cost savings of
6-8X over other approaches that might be used to study the behavior of architectures of this class.
Using today’s technology, i.e., 1997, we could do the same job with a single board. By the end of this
program, we’ll be able to achieve this on a single chip!

FPGAs have been used very much in this fashion, i.e., to emulate microprocessors or application
specific integrated circuits (ASICs). ACS will move the FPGA technology, and hence its
optimization point, further out, leveraging dynamic configuration to achieve increased performance.

8.5

INFOSEC

� �DEFCON� equivalent modes

� Adaptive, genetic, and attack tolerant

� �Point-of-use� encryption

Other Applications

� Missile end game-improved lethality

� Accelerate computational cores

� Efficient for reduced latency variable
precision arithmetic

Communications
� Temporal re-use for

power/area efficiency

� Dynamic channel adaptation

� Adaptive waveforms

DYNAMIC ADAPTATIONDYNAMIC ADAPTATIONDYNAMIC ADAPTATION

or
or

Generic, monolithic Sea
of Gates instantly “wired”

by the application
personality

Generic, monolithic Sea
of Gates instantly “wired”

by the application
personality

Application
Personalities

Application-Enabled
Configurable Computer6

We’ve seen why this technology is important. How and where might this adaptable computing
systems technology be used? Adaptation will become an increasingly important attribute of future
Defense systems. Various phases of a computation could be swapped in and out of a configurable
system, as suggested in the above modulator/demodulator example. Similarly, we may dynamically
adopt a new crypto algorithm, change our model of computation in response to different mission
stages, dynamically adapt to changes in channel conditions, or exploit changes in the dynamic range
of a computation using variable precision arithmetic. The key thing here is the need to respond
rapidly and to be flexible.

8.6

ACS GOALSACS GOALS

ATR/1 Ft.3 500X
Better
ATR/1 Ft.3 500X
Better

1,000,000X reduction
in reconfiguration time:

msec nsec

1,000,000X reduction
in reconfiguration time:

msec nsec

Temporal Re-Use:
Power/Area Efficiency
Temporal Re-Use:
Power/Area Efficiency Defense Testbeds:

ACS Challenge
Problems

Defense Testbeds:
ACS Challenge
Problems

Domain-Specific
Development Environments
Domain-Specific
Development Environments

100X - 1000X Performance
Improvement Over Micro-
Processor Based Systems

100X - 1000X Performance
Improvement Over Micro-
Processor Based Systems

Application Personalities

Application-Enabled Configurable Computer

e.g., DES, RSA, DSS

Generic, monolithic Sea of
Gates instantly “wired” by
the application personality

Generic, monolithic Sea of
Gates instantly “wired” by
the application personality

Productivity Improvements:
 - 10X gates/week
 - auto mapping 0.5M gates
 - compile time reduced
100X

Productivity Improvements:
 - 10X gates/week
 - auto mapping 0.5M gates
 - compile time reduced
100X

7

Performance

 • Continuous, sustained 100x-1000x performance improvement on critical defense signal
processing applications

Cost

 • Cost-effective Defense ACS components…replacement for ASICs

 • Reduced life-cycle costs, simplified logistics…commodity components

Efficiency

 • Direct manipulation of hardware architecture

8.7

MOTIVATIONMOTIVATION

Speedup
 1 10 100

DES Encryption (4/96)

Integer FFT (4/32)

Integer Matrix Mult (4/16)

Sort (15/256)

Shortest Path (16/256)

Genetic Algorithm (TSP)

Source: RAW benchmark suite

 http://cag-www.lcs.mit.edu/raw

* - Brigham Young University

*
8

Shown here are some very conservative speedups, achieved by scientists from MIT and BYU, using
this technology on a few interesting applications. There have been many instances, over the past 10
years, with speedups even greater than shown here. While these results have been impressive and
demonstrative of significant accomplishment…they typically require heroic efforts. However, they
do provide compelling evidence that this technology can be exploited to perform computational
tasks.

The reason heroic efforts are required is the lack of tool support and the significantly long
compilation times required to develop these applications. Often, the user is required not only to be a
domain expert but a hardware expert as well and must be able to formulate his problem using
mechanisms that are familiar only to hardware developers. This, coupled with issues such as
extremely long compilation times (hours as opposed to seconds), reduces productivity.

8.8

PERFORMANCE/FLEXIBILITYPERFORMANCE/FLEXIBILITY

Flexibilityless more

P
er

fo
rm

an
ce

low

high Custom
Hardware

ACS
Technology General Purpose

Processors

Performance benefits of hardware…
 Flexibility of software
Performance benefits of hardware…
 Flexibility of software

9

Shown here is the computing space…with performance on the vertical axis and flexibility on the
horizontal. Custom hardware, such as ASICs, provides significant performance advantages at the
expense of flexibility. Typically, you cannot use an ASIC for processing outside its designed
parameters. It achieves this performance at the cost of reduced flexibility. General purpose
processors provide a great deal of flexibility… they are able to do word processing, solve complex
mathematical operations or play the latest video game. These are things that were not necessarily
envisioned when the processor was developed.

The technology being presented in ACS fits very nicely in the middle. It can provide the performance
benefits of hardware and the flexibility of software… because you create the hardware using
technologies and environments adapted from the software domain. You can very much think of this
as “agile” or “malleable” hardware, because it’s hardware that you can replace on-the-fly in response
to changing demands.

8.9

ACS: ACS: SOFTWARE IN HARDWARE . . .SOFTWARE IN HARDWARE . . .

y = ax2 + bx + c
C: y = a*x*x + b*x + c;

load r1, x
load r2, x -- x*x
mult r1, r2
load r2, a
mult r1, r2 -- a*x*x in r1
load r2, x
load r3, b
mult r2, r3 -- b*x in r2
add r1, r2 -- a*x*x + b*x in r1
load r2, c
add r1, r2 -- y in r1

load r1, x
load r2, x -- x*x
mult r1, r2
load r2, a
mult r1, r2 -- a*x*x in r1
load r2, x
load r3, b
mult r2, r3 -- b*x in r2
add r1, r2 -- a*x*x + b*x in r1
load r2, c
add r1, r2 -- y in r1

* *x b

* +

c

a

+

x2

x2a

bx

bx + c

ax + bx + c2

What happens if
x, a, b and c are
presented as 3-bit
data?

What happens if
x, a, b and c are
presented as 3-bit
data?

10

What do we mean by “software in hardware”? Shown is the binomial equation ax**2 + bx + c,
written first as a mathematician might express it, followed by a representation as it might be
expressed using the popular C programming language. The box on the left shows what a typical
compiler might generate from the provided C code using a generic assembler language
representation. The result is 11 steps of assembly code.

On the right is shown a circuit which might be created using the same input C representation. The
circles are multipliers, the V-shaped objects are adders and pathways are presented using arrows with
the inputs to the equation (x, a, b and c) shown in red. Using this circuit we could arrive at a solution
in 4 steps. So even on such a trivial example such as this we can have speed-ups of 3-4 over a
conventional processor.

The benefits of this technology are actually demonstrated if we consider that the data is actually
being presented in a 3-bit compact form. Additional instructions would be required to unpack the
data and make it usable by the pre-wired 32- or 64-bit data paths existing in general purpose
processors. The circuit on the right would not require any additional changes.

8.10

KEY TECHNOLOGICAL CHALLENGESKEY TECHNOLOGICAL CHALLENGES

nBuilding Blocks Inadequate

nTough To Program

nMinimal Runtime Support

nVerification

n Innovative Algorithms

11

Blocks

 • Create configurable components at various granularities

Program

 • Automate hw/sw co-design

 • Develop high-level programming environments

 • Reduce compilation times

Runtime

 • Automate runtime reconfiguration down to the datapath level

 • Support dynamic logic and datapath level reconfiguration

 • Explore/exploit gate level fault-tolerance in the technology

Verification

 • Develop techniques to rapidly verify that each dynamic mapping will perform its intended function

 • Develop techniques to ensure chip integrity

New Algorithms

 • Leverage ACS technology through new algorithm approaches (e.g., variable precision arithmetic)

8.11

ACS TECHNOLOGIESACS TECHNOLOGIES

ConfigurableConfigurable
Component TechnologyComponent Technology

• Configuration
overhead

• Memory, floating point
• Speed, power, cost,

efficiency, density
• Dynamic contexts
• Computation “macros”
• Heterogeneous/hybrid
• I/O bandwidth
• Granularity

• Community APIs
• Metrics definition
• Challenge problems
• Algorithm

environments
• Virtual machine
• Runtime

management

User-Level SoftwareUser-Level Software

Benchmarks

User
 Environments

APIsRun time
Systems

Sim

ValSyn

Compo nents

 Design
 Reso urce
 Mgmt.

• High-level
language support

• Automatic tradeoffs
• Estimators

Development ToolsDevelopment Tools

• Instrumentation
• Verification
• Co-design
• Partitioning/mapping

12

Various elements come into play when creating the requisite technologies necessary to make ACS
viable. This “onion skin” diagram shows on the outer ring those elements seen by the user of ACS:
the User environments, APIs and runtime tools necessary for him to formulate his application. The
center ring shows the development tools that might be used by the ACS vendors: compilation tools,
partitioning and mapping tools, estimators that could be used to provide feedback to the user
indicating how many gates will be utilized, simulation and verification tools, etc. The core shows the
actual hardware components that are an integral part of the program and enable reconfiguration. Here
we find: gates, memories, computation macros, heterogeneous architectures consisting of FPGAs,
GPs and DSPs, IO support, support for dynamic contexts, floating point operations, etc.

8.12

ACS CHALLENGE PROBLEMSACS CHALLENGE PROBLEMS

n Surveillance Challenge Problem (Sandia National Lab)

n IR Automatic Target Recognition: Tank Application (Night Vision Lab)

n Sonar Adaptive Beamforming (Naval Undersea Warfare Center)

n INFOSEC Separation Challenge (National Security Agency)

n INFOSEC Architectures for Security (NSA)

n Video: Face Recognition (NSA)

n Video: Text Recognition (NSA)

n Fault-tolerant/Low-power Applications (JPL)

n RF Transient Signal Analysis (Los Alamos National Lab)

n Plume Detection and Laser Spectral Analysis (LANL)

www.ito.arpa.mil/ResearchAreas96/AdaptiveComputingSys.htmlwww.ito.arpa.mil/ResearchAreas96/AdaptiveComputingSys.html
13

In order to provide a focus to the ACS community a set of military specific “challenge problems” has
been identified. These problems are being presented to the ACS community, which is invited to
formulate solutions using this technology.

An example is The Surveillance Challenge Problem provided by Sandia National Lab. It represents
an automatic target recognition problem, where ACS will attempt to provide a solution within a
cubic foot…a 500X size reduction over conventional approaches.

Details concerning the challenge problems are presented on the World Wide Web at the following
URL address: http://www.ito.arpa.mil/ResearchAreas96/AdaptiveComputingSys.html.

8.13

ROADMAPROADMAP

� Multimode,
adaptive radio

�Point-of-use encryption

�On-board mission
planning

•Demos

STARLOS,
 MSTAR

Speakeasy,
GloMo

Active
Nets

Assessment &
Ease of Use

ACS
Software

Coarse grain

Chip level

Granularity

P
er
fo
rm

an
ce

de
ns

ity

D
yn

am
ic

H
yb

rid
/

he
te
ro
ge

ne
ou

s

Testbeds
•ATR
•INFOSEC
•Others

 Visual
 programming

Estimators, vendor-
neutral models

Runtime
systems

Challenge problem
definition Metrics

Efficient
mapping

Automatic co-
verification

Fine grain

•Interfaces
•Requirements
•Capabilities

•Component
integration and
evaluation

14

8.14

15

The June 1997 issue of Scientific American has a feature article, “Configurable Computing,” devoted to
this topic. It was written by two principal investigators in the DARPA/ACS program, from UCLA, and
provides an excellent background in the area of configurable computing and how it might be applied to solve
many of the challenging problems presented here.

8.15

